Blog of Adamant Namiki Precision Jewel Co., Ltd.

Issues in implementing EH devices

   Last Modified:    Published: 2021/05

Numerous examples of harvesting kinetic energy of the surroundings to power sensors and telecommunications modules exist.

For example, the kinetic energy of vibrations of roads and bridges can be harvested to power sensors and telecommunications modules that record and transmit bridge conditions and degradation data. Additionally, energy harvesters can be installed in washroom doors to monitor usage. They can also be used to monitor livestock. The possibilities of applying EH modules are almost endless, and energy harvesting is expected to contribute to a wide range of fields such as FA, medical, welfare, transport, logistics, infrastructure, environment, daily life, and entertainment.

However, it cannot be said that EH is currently in widespread use. The main reason is the gap between the cost and performance of current EH technology.

In terms of cost, the cost of current EH technologies is much higher when considering them as an alternative to batteries in conventional applications. This surplus of the cost depends on the unique control circuits and power storage units necessary to efficiently utilize the tiny amounts of power harvested by EH devices.

Regarding performance, there are many cases in which the transmission distance of the telecommunications module is not appropriate for the application. The amount of power that can be drawn from EH is much less than available from conventional batteries. Even if beacons, blue tooth low energy (BLE), Zigbee, and other modules are used, the distance to the receiver (master unit, such as gateways) is often too great. To solve these issues and bring EH performance in line with market requirements, Adamant Namiki Precision Jewels focuses on developing EH devices that can achieve high power generation with simple mechanisms. In addition to beacons, BLE, and Zigbee, it is now possible to transmit specific low power radio signals for long distances (high power consumption). We will continue the R&D effort to improve EH technologies and apply EH to low-power, wide-area (LPWA) networks.

Battery-Free IoT Solution

What is Energy Harvesting? What is Energy Harvesting Challenges?



TAG
5G Analog Artificial diamond Audio Audio accessories Batteryless Coreless motor DC coreless motors DC motor Diamond Diamond semiconductor End effectors Energy harvesting Ferrule Fiber array Fiber connector Fiber optic cables Fiber Optic Components Fiber optic connector Hollow shaft motor Industrial jewel Inner diameter Insulator Interview IoT devices IoT solution MEMS Micromotor Optical communication Optical inner wall metrology system Phonograph Record Record stylus Robot arm Robot arms Robot hand Roundness Ruby Sapphire SDGs Semiconductor Small motor The Story of Record Stylus Watch parts Zirconia ferrule
Pagetop